Constrained newton methods for transport network equilibrium analysis

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-Newton Methods for Nonconvex Constrained Multiobjective Optimization

Here, a quasi-Newton algorithm for constrained multiobjective optimization is proposed. Under suitable assumptions, global convergence of the algorithm is established.

متن کامل

Action constrained quasi-Newton methods

At the heart of Newton based optimization methods is a sequence of symmetric linear systems. Each consecutive system in this sequence is similar to the next, so solving them separately is a waste of computational effort. Here we describe automatic preconditioning techniques for iterative methods for solving such sequences of systems by maintaining an estimate of the inverse system matrix. We up...

متن کامل

Generalized Nash equilibrium problems and Newton methods

The generalized Nash equilibrium problem, where the feasible sets of the players may depend on the other players’ strategies, is emerging as an important modeling tool. However, its use is limited by its great analytical complexity. We consider several Newton methods, analyze their features and compare their range of applicability. We illustrate in detail the results obtained by applying them t...

متن کامل

Far-from-equilibrium transport with constrained resources

The totally asymmetric simple exclusion process (TASEP) is a well studied example of far-from-equilibrium dynamics. Here, we consider a TASEP with open boundaries but impose a global constraint on the total number of particles. In other words, the boundary reservoirs and the system must share a finite supply of particles. Using simulations and analytic arguments, we obtain the average particle ...

متن کامل

Newton-type methods for unconstrained and linearly constrained optimization

This paper describes two numerically stable methods for unconstrained optimization and their generalization when linear inequality constraints are added. The difference between the two methods is simply that one requires the Hessian matrix explicitly and the other does not. The methods are intimately based on the recurrence of matrix factorizations and are linked to earlier work on quasi-Newton...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tsinghua Science and Technology

سال: 2009

ISSN: 1007-0214

DOI: 10.1016/s1007-0214(09)70147-6